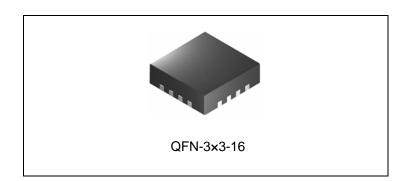


General Description

The AP3615 is a step-up DC-DC converter based on 1x/1.5x charge pump and low dropout current sink, which helps it maintain the highest efficiency. The AP3615 is specially designed to drive up to 5 WLEDs in backlight display.

The AP3615 provides up to 20mA current for each WLED. There are totally 16 steps of current control, which is achieved through a digital pulse dimming function on EN pin. Additionally, 1MHz high switching frequency enables the use of small external capacitors. Internal soft-start circuitry prevents excessive inrush current during start-up and mode transition.

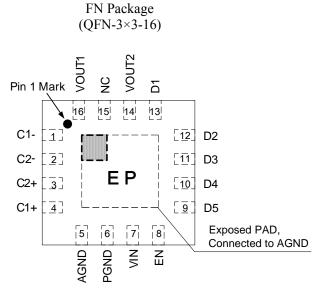
The supply voltage of AP3615 ranges from 2.8V to 5.5V which make it ideally suit for applications powered by Li-ion battery.

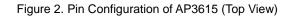

The AP3615 is available in the tiny package of QFN- $3\times 3-16$.

Features

- Regulated Output Current with ±3% Matching
- Drives up to 5 WLEDs at 20mA Each
- 16 Steps Brightness Control Using Pulse Signal Dimming
- Wide Operating Voltage Range: 2.8V to 5.5V
- High Operating Frequency: 1MHz
- Auto 1x/1.5x Charge Pump Mode Selection
- Built-in Soft-start
- Output Over Voltage Protection
- Built-in UVLO
- Built-in OTSD
- Operating Temperature Range: -40°C to 85°C

Applications


- Mobile Phone
- PDA
- MP3/4



Pin Configuration

Note: Pin 14 should be connected with Pin 16 on PCB Board.

Pin Description

Pin Number	Pin Name	Function
1	C1-	Flying capacitor 1 negative terminal. The flying capacitor should be connected as close to this pin as possible
2	C2-	Flying capacitor 2 negative terminal. The flying capacitor should be connected as close to this pin as possible
3	C2+	Flying capacitor 2 positive terminal. The flying capacitor should be connected as close to this pin as possible
4	C1+	Flying capacitor 1 positive terminal. The flying capacitor should be connected as close to this pin as possible
5	AGND	Analog ground
6	PGND	Power ground
7	VIN	Supply voltage input
8	EN	Enable control input. Logic high enables the IC; while logic low forces the IC into shutdown mode. It is used for digital dimming by applying a pulse signal on it.
9, 10, 11, 12, 13	$D5 \sim D1$	Current sink for WLED5, 4, 3, 2, 1. Connect the cathode of WLEDs to these pins. If not used, these pins must be connected with VIN
14	VOUT2	Output pin 2. It powers 5 channels current sink
15	NC	No connection
16	VOUT1	Output Pin 1. It's the charge pump output. The output capacitor should be placed closely to this pin

AP3615

Functional Block Diagram

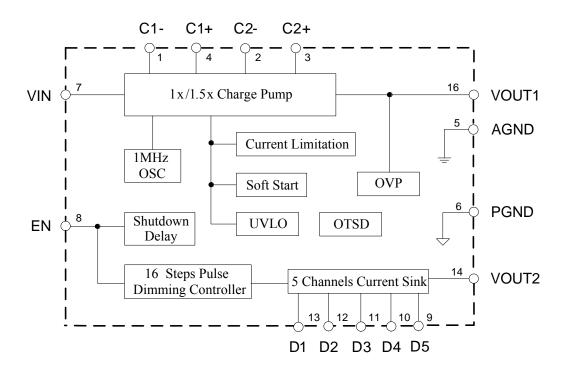
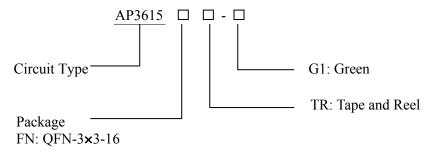



Figure 3. Functional Block Diagram of AP3615

Ordering Information

Package	Temperature Range	Part Number	Marking ID	Packing Type
QFN-3×3-16	-40 to 85°C	AP3615FNTR-G1	B2B	Tape & Reel

BCD Semiconductor's Pb-free products, as designated with "G1" suffix in the part number, are RoHS compliant and green.

Jan. 2013 Rev. 1. 3

AP3615

Absolute Maximum Ratings (Note 1)

Parameter	Symbol	Value	Unit
Input Voltage	V _{IN}	-0.3 to 6	V
VOUT Pin Voltage (VOUT1 & VOUT2)	V _{OUT}	-6 to 0.3	V
EN Pin Voltage	V _{EN}	-0.3 to 6	V
C1+, C2+ Pin Voltage	V _{C+}	-0.3 to 6	V
C1-, C2- Pin Voltage	V _C -	-6 to 0.3	V
D1, D2, D3, D4 and D5 Pin Voltage	VD	V_{OUT} to V_{IN}	V
Thermal Resistance (Junction to Ambient, No Heat Sink, Free Air)	θ_{JA}	60	°C/W
Operating Junction Temperature	TJ	150	°C
Storage Temperature	T _{STG}	-65 to 150	°C
Lead Temperature (Soldering, 10sec)	T _{LEAD}	260	°C

Note 1: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

Recommended Operating Conditions

Parameter	Symbol	Min	Max	Unit
Input Voltage	V_{IN}	2.8	5.5	V
Operating Ambient Temperature	T _A	-40	85	°C

AP3615

Electrical Characteristics

 V_{IN} =3.6V, V_{EN} = V_{IN} , T_A =25°C, C_{IN} =C1=C2= C_{OUT} =1 μ F, V_F (forward voltage)=3.2V, unless otherwise noted.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Input Section				•		
Input Voltage	V _{IN}	I _D =0mA to 100mA	2.8		5.5	V
Under Voltage Lockout Threshold		V _{IN} Falling		2.2		V
Under Voltage Lockout Hysteresis				250		mV
Supply Current	I _{CC}	No Load		1.7	3	mA
Shutdown Supply Current	I _{SHDN}	V _{EN} =GND		3	10	μΑ
Charge Pump Section			•	•		
Switch Frequency	f _{OSC}	V _{IN} =3.0V, 1.5x Mode	0.7	1	1.3	MHz
1x Mode to 1.5x Mode Transition Voltage (V_{IN} Falling)	V _{1.5X}	$V_{D}=3.2V, \\ I_{D1}=I_{D2}=I_{D3}=I_{D4}=I_{D5}=20mA \\ V_{D}=3.2V, \\ $		3.5	3.6	V
1.5x Mode to 1x Mode Transition Voltage (V_{IN} Rising)	V_{1X}	$V_{D}=3.2V,$ $I_{D1}=I_{D2}=I_{D3}=I_{D4}=I_{D5}=20mA$		3.7	3.8	V
Current Source Section						
WLED Current	I _D	100% Setting, $3.0V \le V_{IN} \le 5.0V$ $T_A = -40^{\circ}C$ to $85^{\circ}C$	18.5	20	21.5	mA
Current Matching Between any Two Outputs	I _{D-Match1}	$V_{D1} = V_{D2} = V_{D3} = V_{D4} = V_{D5} = 3.2V$	-3		3	%
Current Matching Between any Two Outputs	I _{D-Match2}	$V_{D1}=V_{D2}=V_{D3}=V_{D4}=V_{D5}=3.0V$ to 4.0V $V_{IN}=3.2V$ to 5.0V	-3.5		3.5	%
Enable Section		·				
EN High Level Threshold Voltage	V_{IH}		1.5			V
EN Low Level Threshold Voltage	V _{IL}				0.5	V
EN Input Current	I _{EN}	$V_{\rm EN} = 0V$ to 5V		1	10	μΑ
EN Low to Shutdown Delay	t _{SHDN}		1			ms
EN Low Time for Dimming	t _{LO}		0.1		0.3	ms
EN High Time for Dimming	t _{HI}		0.1			ms
Total Device						
Soft-start Time	t _{ss}	I _D =100mA Total		200		μs
Inrush Current	I _{INRUSH}	V _{IN} =3.2V, I _D =100mA Total		320		mA
Over Voltage Protection	V _{OVP}	Note 2		5.5		V
Thermal Shutdown	T _{OTSD}			160		°C
Thermal Shutdown Hysteresis	T _{HYS}			20		°C
Thermal Resistance (Junction to Case)	θ_{JC}	QFN-3×3-16		15		°C/W

Note 2: Open circuit at any WLED that is programmed to be in the on state.

AP3615

Typical Performance Characteristics

T_A=25°C, C_{IN}=C₁=C₂=C_{OUT}=1 μ F, V_F=3.2V, unless otherwise noted.

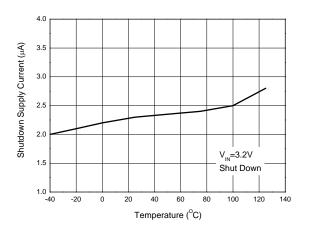


Figure 4. Shutdown Supply Current vs. Temperature

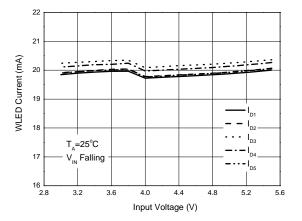


Figure 5. WLED Current vs. Input Voltage

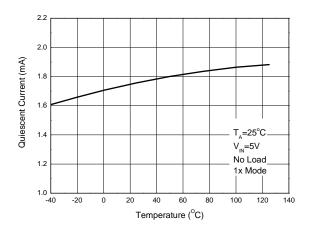


Figure 6. 1x Mode Quiescent Current vs. Temperature

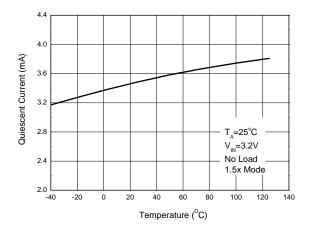


Figure 7. 1.5x Mode Quiescent Current vs. Temperature

Typical Performance Characteristics (Continued)

 $T_A=25^{\circ}C$, $C_{IN}=C_1=C_2=C_{OUT}=1\mu F$, $V_F=3.2V$, unless otherwise noted.

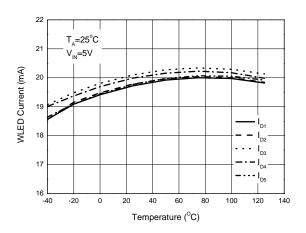


Figure 8. 1x Mode WLED Current vs. Temperature

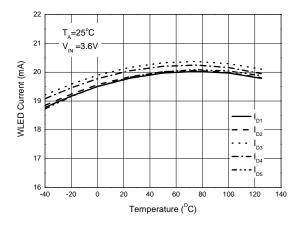


Figure 9. 1.5x Mode WLED Current vs. Temperature

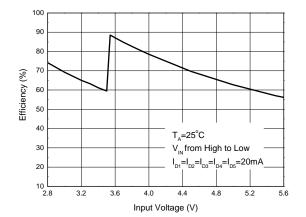


Figure 10. Efficiency vs. Input Voltage

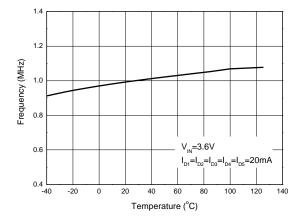


Figure 11. Frequency vs. Temperature

Jan. 2013 Rev. 1. 3

Typical Performance Characteristics (Continued)

 $T_A=25^{\circ}C$, $C_{IN}=C_1=C_2=C_{OUT}=1\mu F$, $V_F=3.2V$, unless otherwise noted.

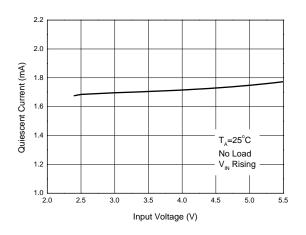


Figure 12. 1x Mode Quiescent Current vs. Input Voltage

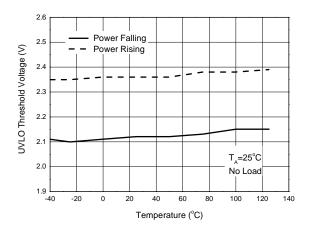
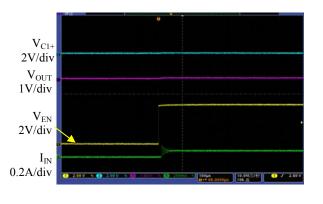
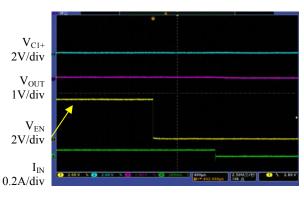




Figure 13. UVLO Threshold Voltage vs. Temperature

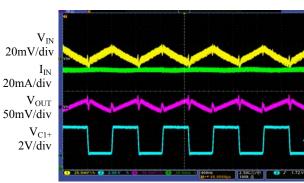
Time (100µs/div)

Figure 14. 1x Mode Turn on Characteristic

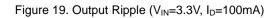
Time (400µs/div)

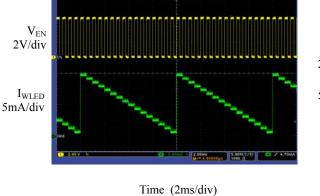
Typical Performance Characteristics (Continued)

 $T_A=25^{\circ}C$, $C_{IN}=C_1=C_2=C_{OUT}=1\mu F$, $V_F=3.2V$, unless otherwise noted.



Time (100µs/div)


Figure 16. 1.5x Mode Turn on Characteristic



Time (400µs/div)

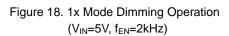


Figure 17. 1.5x Mode Turn off Characteristic

AP3615

Digital Dimming Operating Diagram

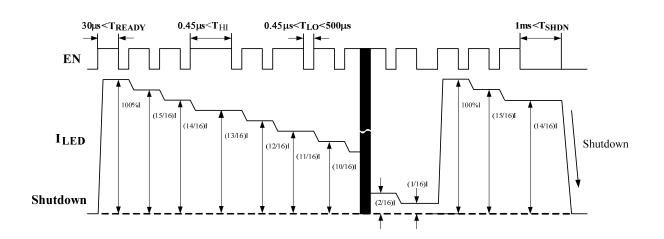
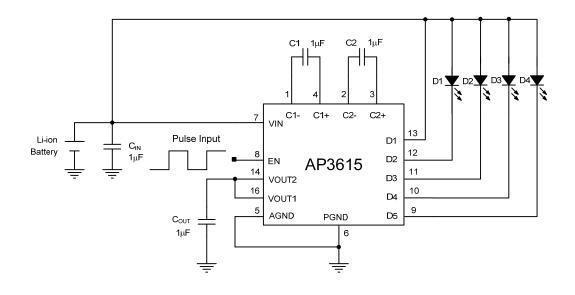
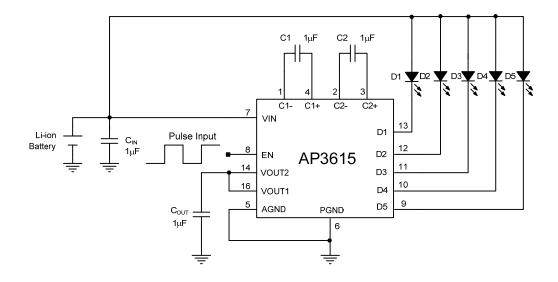



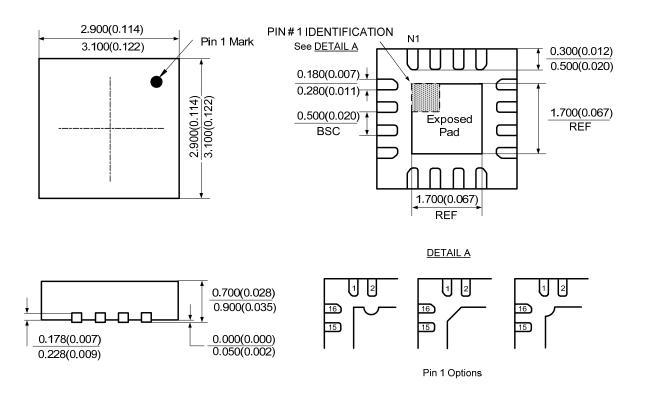
Figure 20. Digital Dimming Operating Diagram of AP3615

Note 3: The dimming control can be achieved by applying a pulse to the EN pin. When the low level duration time of pulse is between T_{LOmin} and T_{LOmax} , and the high level duration time is larger than T_{HImin} , the LED current will decrease 1/16. If the low level duration time is larger than $T_{SHDNmax}$, the IC will be turned off. When AP3615 is powered on, the WLED is in full brightness. And it will keep maximum current until the pulse is detected. After 15 pulses the WLED current decreases to 1/16 of full brightness. It will increase to full brightness if a pulse is added to EN pin then.

Typical Application

4 WLEDs




Figure 21. Typical Applications of AP3615

Detailed application information, please refer to AP3615 application note.

Mechanical Dimensions

QFN-3×3-16 Unit: mm(inch)

BCD Semiconductor Manufacturing Limited

http://www.bcdsemi.com

IMPORTANT NOTICE

BCD Semiconductor Manufacturing Limited reserves the right to make changes without further notice to any products or specifications herein. BCD Semiconductor Manufacturing Limited does not assume any responsibility for use of any its products for any particular purpose, nor does BCD Semiconductor Manufacturing Limited assume any liability arising out of the application or use of any its products or circuits. BCD Semiconductor Manufacturing Limited does not convey any license under its patent rights or other rights nor the rights of others.

MAIN SITE

- Headquarters

BCD Semiconductor Manufacturing Limited No. 1600, Zi Xing Road, Shanghai ZiZhu Science-based Industrial Park, 200241, China Tel: +86-21-24162266, Fax: +86-21-24162277

REGIONAL SALES OFFICE Shenzhen Office

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd., Shenzhen Office Unit A Room 1203, Skyworth Bldg., Gaoxin Ave.1.S., Nanshan District, Shenzhen, China Tel: +86-755-8826 7951

Tel: +86-755-8826 7951 Fax: +86-755-8826 7865

- Wafer Fab

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd. 800 Yi Shan Road, Shanghai 200233, China Tel: +86-21-6485 1491, Fax: +86-21-5450 0008

Taiwan Office

BCD Semiconductor (Taiwan) Company Limited 4F, 298-1, Rui Guang Road, Nei-Hu District, Taipei, Taiwan Tel: +886-2-2656 2808

Tel: +886-2-2656 2808 Fax: +886-2-2656 2806 USA Office BCD Semiconductor Corp. 30920 Huntwood Ave. Hayward, CA 94544, USA Tel : +1-510-324-2988 Fax: +1-510-324-2788